杭工法の比較について

	A案		B案		C案		D案	
工法	PHC杭(既製杭)		鋼管杭(既製杭)		場所打ちコンクリート杭(現場造成杭)		地盤改良杭	
	プレボーリング拡大根固め工法(高支持力)		回転圧入鋼管杭工法		アースドリル工法		深層混合地盤改良工法	
杭仕様	支 持 層 : 設計GL-8m 砂礫層 (N値40) 先端支持力係数 : α=363 杭 仕 様 : 既成コンクリート杭 杭 径 : 1,000φ 杭 長 : 6m		支持 層 : 設計GL-8m 砂礫層 (N値40) 先端支持力係数 : α=150 杭 仕 様 : 鋼管杭 杭 径 : 406φ (羽根径 1,054φ) 杭 長 : 6m		支持層: 設計GL-8m 砂礫層 (N値40) 先端支持力係数: α=150 杭仕様: 場所打ちコンクリート杭 杭径: 2,000φ 杭長: 6m		支持層: 設計GL-5m 砂礫層(N値30) 設計基準強度: Fc1,050 杭 仕様: 地盤改良杭 杭 径: 1,500ф 杭 長: 3m	
メリット	・低騒音・低振動工法であり公害防止に役立つ ・杭材が工場製造のため品質管理が容易で信頼性が高い ・支持力が大きいため杭本数を少なくできる		・低騒音・低振動工法であり公害防止に役立つ ・杭材が工場製造のため品質管理が容易で信頼性が高い ・無排土工法で残土処分費がかからない ・プラント設備が不要		・支持力が大きいため1柱1杭で計画できる ・資材は鉄筋コンクリート造と同じで納期を短くできる		・低騒音・低振動工法であり公害防止に役立つ ・杭基礎よりも浅い深度で建物を支持できる ・建設地の土と固化材は配合して杭を築造するため納期 を短くできる	
デメリット	・プラント設備と杭のストックヤードが必要 ・排土が多く、残土処分費がかかる ・資材の納期に時間がかかる		・先端支持力係数が小さいため、杭1本あたりの支持力 が小さく本数が多くなる		・掘削土が多いため残土処分量が多い ・残土搬出車及びコンクリートミキサー車の出入りが多い ・余盛部のコンクリート斫りによる騒音が発生する		・プラント設備が必要・改良杭1本あたりの支持力が小さい	
		評価		評価		評価		評価
概算支持力	3,800 kN/杭	0	1,800 kN/杭	0	7,000 kN/杭	0	800 kN/杭	Δ
施工日数	30日	0	45日	×	40日	Δ	30日	0
資材納期	3ヵ月	Δ	2ヵ月	Δ	現場で杭を構築する	0	現場で地盤改良を構築する	0
杭工事費(比率)	145,000,000 円 (1.00)	0	362, 500, 000 円 (2.50)	×	217, 500, 000 円 (1.50)	×	116,000,000 円 (0.80)	0
総合評価	・プラント設備が必要であるが、計画地には 十分なスペースがあるため支障ない ・杭工法の中では最も経済性がある	0	・杭工事による残土処分は不要になる。 ・杭1本あたりの支持力が小さく、施工日数 及びコストともに過大となり不適	×	・杭1本あたりの支持力が大きく杭本数を 少なくできるが、コストが高い	Δ	・プラント設備が必要であるが、計画地には 十分なスペースがあるため支障ない ・施工日数及びコストともに最も優位	0

- ※基礎の仕様は地盤調査結果により、変更となる可能性があります。
- ※「江別市民会館建設予定地地質調査」結果を参考に検討を行いました。
- ※液状化の発生はないものと仮定して検討を行いました。
- ※杭工事費は令和7年2月時点の単価です。
- ※杭工事費の経費は25%、消費税は10%としています。